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Effect of an electric field on heat transfer in 
a paraelectric gas 

By G. POOTS 
Department of Theoretical Mechanics, Bristol University 

(Received 21 May 1962 and in revised form 20 August 1962) 

This paper deals theoretically with some aspects of the inf4uence of a non- 
homogeneous electric field on the laminar convective motion and heat transfer 
in paraelectric gas, i.e. a gas consisting of molecules having a permanent electric 
dipole moment. It is found that, due to the variation of the dielectric suscepti- 
bility with temperature, the electric field produces an electrical buoyancy force. 
Convective velocities and heat transfer in the gas near a heated surface are found 
to be increased or decreased according as the electrical buoyancy force acts 
with or in opposition to the net force of the existing pressure gradient and gravi- 
tational buoyancy force. 

The equations of motion for a paraelectric gas in the presence of an electric 
field are derived in a simplified form by the use of approximations similar to those 
of Boussinesq (1903). An exact solution of these equations is presented for the 
problem of laminar convection flow, under a pressure gradient, between vertical 
concentric cylinders which are maintained at different electrostatic potentials 
and whose wall temperatures decrease uniformly with increasing height. Here 
the electric field induces a heated down-flow to be superimposed on the existing 
cooled up-flow (or heated down-flow). 

Boundary-layer equations are also derived for the laminar convective motion 
due to a heated charged sphere. These equations are solved by an approximate 
method due to Squire (1938). 

1. Introduction 
Senftleben & Braun (1936) have carried out an experimental investigation on 

the effect of an electric field on natural convection flow in gases. They discovered 
that if an electrostatic potential difference is applied between a heated horizontal 
wire and a concentric cylinder maintained at a lower temperature, the heat trans- 
fer from the wire is increased when the annulus is f l e d  with a paraelectric gas, 
i.e. a gas consisting of molecules having a permanent electric dipole moment. 
The explanation is as follows: in the presence of the radial electric field the 
gas will experience an additional body force. This force acts radially inwards 
and depends on the strength of the electric field and the dielectric susceptibility, 
which decreases with increasing temperature. Consequently an element of hot 
gas will experience a lesser force than an element of cold gas in the same position. 
Now if the wire were a t  the same temperature as the surrounding gas the 
electrical and gravitational body forces would be in equilibrium with the hydro- 



188 G .  Poots 

static pressure and so no flow would ensue. However, if the wire is heated the 
resulting temperature gradient near the wire causes a defect in the radial electrical 
body force. This is superimposed on the existing defect in the vertical gravita- 
tional body force and so there is an increase in the convection of heated gas 
away from the wire and so an increase in heat transfer from the wire. 

In  a later paper Kronig & Schwarz (1949) analysed the measurements of the 
above experiment and demonstrated how the results for different gases could be 
correlated on the introduction of a new dimensionless group, which plays a simi- 
lar role in the effect of the electric forces as the Grashof number in the effect of the 
gravitational buoyancy force. The effect of an electric field on heat transfer has 
been used in practice for the continuous analysis of gas mixtures containing a 
paraelectric component (see Kronig 1942 and Schwarz 1949). 

In  the present paper some theoretical aspects of the influence of a non-homo- 
geneous electric field on heat transfer rates in a paraelectric gas are discussed. 
First, in $ 2 the equations relating to the laminar convective motion of the gas 
are considered and simplified. In  $ 3  an exact solution of these equations is 
obtained for the flow and heat transfer of a paraelectric gas, under a pressure 
gradient, between vertical concentric cylinders which are maintained at different 
electrostatic potentials and whose wall temperatures decrease uniformly with 
increasing height. In  $ 4 the boundary-layer equations for the convective motion 
due to a heated charged sphere are derived and solved by an approximate method. 

2. The equations of steady motion 
Following Boussinesq (1903) the equations for steady motion of a paraelectric 

gas are simplified by assuming that: 

(i) The temperature difference T - T o  is small compared with the absolute 
temperature To, which is usually taken as the ambient temperature of the gas. 

(ii) All physical constants of the gas are independent of the temperature and 
allowance is made for variations in density and dielectric susceptibility only in 
the calculation of the body forces. 

(iii) The fluid is incompressible and viscous heat dissipation may be neglected. 
Then the governing equations of motion and the electric field are: 

divv = 0, (2.1) 

- pv x curl v = F - grad ( p  + Qpv2) - pv curl curl v, (2.2) 

v . grad T = k dir grad T, (2.3) 

curlE = 0, (2.4) 

and div (1 + 4nx) E = 0. (2.5) 

Here v is the velocity, p the density, F the body force, p the pressure, v the 
kinematic viscosity, T the temperature, k the thermal diffusivity, E the electric 
field and x the dielectric susceptibility. 

In  the case of natural convection, with gravity the only force acting, the gravi- 
tational body force per unit volume of gas is 

F, = P%9 



Effect of an electric jield on heat transfer in a paraelectric gas 189 

and the appropriate equation of state is 

However, if the gas is paraelectric there will be an additional force due to the 
applied electric field E. The electrical body force per unit volume of gas is (see 
Landau & Lifshitz 1960, p. 64) 

F, = grad {E2p(ax/ap),} - aE2grad x. (2.8) 

In  order to calculate F, a knowledge of the dependence of x on p and T is required. 
This is given by Debye’s theory of electric polarization, according to which for a 
dielectric gas (see Loeb 1927, Ch. 10) 

x = gi) (IT+&). 

Here N is Avogadro’s number, M the molecular weight, u the polarizability of a 
gas molecule, ,u the dipole moment of a gas molecule and kB the Boltzmann con- 
stant. From Debye’s law it follows that p(ax /ap ) ,  = x and expression (2.8) 
becomes F, = &x grad E2. 

This expression can be further simplified with assumption (i); thus 

(2.10) 

X(P7 T )  = x o +  ( a x I ~ P ) T o ( P - P o ) +  (ax/aT),o(T-~o) + ...’ (2.11) 

where the suffix 0 signifies some reference condition of the system. Since 

(2.13) 
m=g(u+&J and x o = - p 0  N c+- 

where M ( 3<T)* 

The total body force F acting on unit volume of gas is then 

F = FB + F, = p g  + 4xgrad E2. (2.14) 

It remains now to discuss the determination of the electric field E. Since the 
dielectric susceptibility of the gas is very small (e.g. 47rx = 7.2 x 10-3for ammonia 
gas at N.T.P.), assumption (i) implies that equation (2.5) can be approximated to 
simply by 

divE = 0. (2.15) 

It then follows from (2.4) and (2.15) that 

E =  -grad$ and V 2 $ = 0 ,  (2.16) 

where $is the electrostatic potential. Equations (2.15) and (2.16) are equivalent 
to the statement that the electric field is uninfluenced by the non-uniform motion 
of the gas. 

With the aid of equations (2.14)’ (2.16), (2.7) and (2.12) the combined electrical 
and gravitational body force may be determined for any system. In  fact the 
electrical body force is analogous to the gravitational body force. This can be 
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seen more clearly on consideration of the defect in these forces produced by heat- 
ing the gas. The gravitational buoyancy force per unit volume of gas is 

(2.17) 

and the electrical buoyancy force per unit volume of gas is 

(F - Fo)e = i(x - xo)  grad E2 = - $pom{(T - To)/To} grad E2. (2.18) 

Furthermore, it follows from (2.17) and (2.18) that a non-homogeneous electric 
field E will produce, at any position, a substantial electrical buoyancy effect if 

+grad (mE2) 9 g, (2.19) 

a condition which can be satisfied in practice provided the gas is paraelectric. 
Thus the equations relating to the steady convective motion of a heated 

paraelectric gas in the presence of an electric field are (2.1), (2.2), (2.3), (2.14), 
(2.7), (2.12) and (2.16) subject to certain boundary conditions to be stated as 
required. Note that all physical constants appearing in these equations must be 
evaluated at the reference temperature To. In  the following, the e.8.u. and c.g.s. 
systems of units are adopted. 

3. The influence of a radial electric field on the cooled up-flow (or 
heated down-flow) of a paraelectric gas between vertical concentric 
cylinders 

Consider the steady fully developed laminar flow, under a pressure gradient, 
of a paraelectric gas between vertical concentric cylinders of radius a and b cm 
respectively (b  > a),  which are maintained a t  a uniform temperature gradient 
(T/u) "C/cm in the direction of the axis. The system will be referred to cylindrical 
polar co-ordinates ( r ,  4, x) and due to axial symmetry will be independent of 4. 
The cylinders are charged to potentials Va and Vb volts resulting in the electro- 
static- field 

E, = Esa/r, E, = E# = 0,  

where 23, = ( F a -  Vb)/300alog (b/a) e.s.u. The temperature of the walk is 

T, = To-Tx/a (T > 0). (3.2) 

(3.3) 

A similarity solution of the basic equations of motion is possible provided 

v = {u(r), 0 ,  0}, T = T, + O(r). 

The equation of continuity (2.1) is identically satisfied, and the momentum 
equation (2.2) and thermal energy equation (2.3) become 

where now 
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If E, is zero equations (3.4) and.(3.5) imply that the pressure will vary only in 
the direction of flow. The resulting similarity solution relates to the combined 
free and forced convection for a fully developed cooled up-flow (or heated down- 
flow). A detailed discussion of these equations has been given by Morton (1960) 
for the combined free and forced convection in a uniformly cooled (or heated) 
vertical tube. 

Now if E, is non-zero equation (3.5) implies a radial pressure gradient. More- 
over, as x decreases linearly with increasing height (see equations (2.12), (3.2) 
and (3.3)) there will be an induced axial pressure gradient due to the electric 
field. More precisely, on using expressions (2.7) and (3.3), equation (3.4) is 

PU + pgp, 0 = apiax + pwg,  (3.7) 

ap/ax+p,g = m); (3.8) 

where /3 = l/To. Equation (3.7) implies that 

and on using (2.7) and (3.2), and integrating, it follows that 

P ( X ,  r )  = xP(r) -PoS{. + (/37/2a) x2} + G(r) ,  

and so from (3.5) the unknown functions P(T) and G(r)  must satisfy 

P'(r) = -,8pom7E,2a/r3 and G'(r) = -{~o-/3pom0(r)}E,2a2/r3. 

Hence F = /3pom~E:a/2r2+C, (3.9) 

where C is a pressure-drop constant, i.e. the dynamic pressure gradient when the 
electric field is zero. Finally the equation of motion (3.7) simplifies to 

Vau+ (/3g/v) 8-/3mTE:a/2ur2 = p-IC, (3.10) 

which together with equation (3.6) is to be solved subject to the boundary 

(3.11) 
conditions %(a) = ~ ( b )  = 6(a) = B(b) = 0. 

Equations (3.6), (3.10) and (3.11) can be expressed in non-dimensional form 

R = r/a, X = x/a, U = au/k and 0 = 01.. (3.12) 

by introducing the new variables 

These equations then become: 

RdR 1 a ("=) au + A @  = -+ [ A  y ,  
2R2 

(3.13) 

(3.14) 

and U =  0 = 0 at R =  1 and bla. (3.15) 

Here A = /3gra3/kv is the Rayleigh number based on the inner tube radius and 
the temperature drop along the walls in a length equal to this tube radius; 
y = (a3/kvp,) C is a dimensionless pressure-drop constant; [ = mE:/gais adimen- 
sionless group involved in the ratio of electrical buoyancy force to gravitational 
buoyancy force for the system. 
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For convenience let U and 0 be each divided into two parts as follows: 

and 
u= -yu,+EAU,, 
0 = y@,+&m,. 

(3.16 a) 

(3.16b) 

On substitution of (3.16a) and (3.16b) into equations (3.13) to (3.15), and 
equating to zero the coefficients of y and [, the functions (U,, 0,) and (U,, 0,) 
are found to satisfy: 

and U, = 0, = Oat R = 1 and b/a; J 

and U, = 0, = Oat R = 1 and b/a. J 
Physically - y U, and y 0, are the dimensionless velocity and temperature com- 
ponents due to the applied pressure gradient and the gravitational buoyancy 
force; EAV, and &40, are the dimensionless velocity and temperature components 
induced by the electrical buoyancy force. 

If 0, is eliminated from (3.17), the result is 

2 (&+;&) u,= 0,  (3.19 a) 

subject to the boundary conditions 

U,(l)=U,(b/a)=O, -+-- U,=- l  at R = l a n d b / a ,  (3.196) ( ii2 A :R) 
respectively. The solution of (3.19a) and (3.19b) can be expressed in terms of the 
zero-order BesselfunctionsJ,(AfR) andY,(Ab.R) and the modified Bessel functions 
of zero order Io(AiR) and K,(AiR). The solution is 

U, = clJo(A)R) + c2Y,(A*R) + c,Io(AfR) + c4Ko(AfR), (3.19~) 

where the constants of integration cd are: 

2A)Alcl = Y,(bA$/a) -Y,(Ai),  2Ab.4.,c2 = J,(Ai) -J,(bAt/a), 

(3.20) Here 

and A, = Io(Ai) K,(bA*/a) - I,(bA*/a) K,(Af).  (3.21) 

Moreover, if 0, is eliminated from (3.18), the result is 

2AfA2ca = K,(A*) -K,(bA*/a), 2A)A2c4 = I,(bA*/a) - I,(Af). 
A1 = J,(Af) Y,(bAi/a) - J,(bAi/a) YJAf) ,  

subject to the boundary conditions 

(3.22 a) 

1 q(1) = U,(b/u) = 0, -+-- U , = -  at R =  1 and b/a, (ji2 A&) 2R2 
(3.223) 
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respectively. Introducing the functions 

1 B,(AfR) = J,(A*R) -&(A&) dR - Y,(AfR) -Jo(AfR) dR, sp IlR k 
JIR : JIR k and B,(A*R) = Io(AfR) -K,(A.)R) d R  - Ko(AiR) -Io(AfR) d R ,  

the solution of (3 .22a)  and (3 .22b)  can be expressed in the form: 

u, = d,J,(AfR) -td,Y,(A*R)+d,I,(AfR) 
+dE,K,(AfR) - @B,(AfR) + &B,(AfR). 

The constants of integration di were obtained as follows: 

8Aldl = - r&(Af) B,(bA&/a), 

4A,d3 = K, (Af )  B,(bAf/a), 
8A,d,  = mJ,(Af) B,(bAf/a), 
4A,d, = -Io(Af)  B , (bAf /a ) .  
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(3.22 c )  

(3 .22d)  

(3 .22e)  

The integrals occurring in equations ( 3 . 2 2 ~ )  cannot be expressed in terms of 
Bessel functions but can be evaluated numerically by quadratures.? Expressions 
for 0, and 0, are not given as these are readily obtained using equations (3.17) 
and (3 .18)  and expressions ( 3 . 1 9 ~ )  and (3 .22d) .  

Examination of (3 .20)  shows that there are critical values of A for which 
A1 = O.$ Then the constants of integration cl, c,, d,, d,, occurring in expressions 
(3 .19d)  and (3.22e),  are infinite thus giving infinite velocity and temperature 
distributions. For example, if b / a  = 2,  the critical Rayleigh numbers are 
Af = 3-1230,6-2734, etc. Non-dimensionalvelocity functions U, and V, are shown 
in figure 1 ,  and the temperature functions 0, and 0, in figure 2,  for Af = 1 ,  2 
and 3 ,  taking b / a  = 2 .  It can be seen that I U J ,  I V,l, l0,l and 10,1 increase at  first 
slowly with increasing A and then increase extremely rapidly as the critical value 
Af = 3.1230 is approached. In  the terminology of Morton (1960) the solution is 
then said to ‘run-away ’. The explanation given by Morton is that as the tempera- 
ture gradient along the walls is increased, greater buoyancy forces are produced 
leading to higher gas velocities, and so to a further increase in the buoyancy force. 
In  the range 3.1230 < A < 6.2734 the velocity and temperature functions were 
found to have a different character. In  fact U,, V,, 0, and 0, were then found to 
alternate once in sign indicating an up-flow and down-flow near the inner and 
outer walls, respectively. Furthermore, as pointed out by Morton, the more 
complicated flows that theoretically exist above A& = 3.1230 would probably 
not occur in practice, as they would require improbable end conditions. Moreover, 
at or near A )  = 3-1230 the laminar similarity solution discussed in this section, 
would probably be in error since in practice the flow may become unstable and 
then turbulent. 

From figures 1 and 2 the dimensionless velocity and temperature profiles may 
be obtained for specified values of the parameters y and [ (see expressions ( 3 . 1 6 ~ )  

The integral Ji,(z) = - J,(z)dz  has been evaluated by Lowan, Blanch & 

$ The roots of the transcendental equation A, = 0, for various values of bia, have been 
Ambramowitz (1943). SIm : 
tabulated by Carslaw & Jaeger (1947, p. 379). 

13 Fluid Mech. 16 
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and (3 .16b)) .  Physically y > 0 corresponds to a heated down-flow, whilst y < 0 
corresponds to a cooled up-flow; these flows are due to the applied pressure 
gradient and the gravitational buoyancy force. However, > 0 corresponds to 
a heated down-flow induced by the electrical buoyancy force. Thus the gas velo- 
city in a cooled up-flow between vertical concentric cylinders will be reduced in 

0 2  
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s 
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FIGURE 1. Non-dimensional velocity func- 
tions U ,  and U,for A = 1, 16, 81. Actual 
non-dimensionalvelocity U= - yU, + EAU,. 

FIG~RE 2. Non-dimensional temperature 
functions 0, and 0, for A = 1, 16, 81. 
Actual non-dimensional temperature 0 = 
70, + 430,. 

magnitude if an electrostatic potential difference exists between the cylinders. 
It is perhaps instructive to establish an approximate condition for the electrical 
buoyancy effect to be comparable in magnitude with the combined effect of the 
pressure gradient and the gravitational buoyancy effect. Consider the relative 
magnitude of the terms on the right-hand side of equation (3 .14) .  If, say, 

i.e. (3 .23 )  
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the electrical and combined pressure-gradient and gravitational effects will be 
of the same order. Taking b/a = 2, the condition (3.23) gives 6 = O(4.4 y / A ) ,  a 
result verified by the exact calculations shown in figures 1 and 2, where it is seen 
that the ratios lU,l and [ @ , I :  lael, at any R,  are both approximately in the 
ratio 5 : 1. Having established the validity of (3.23) it  follows that the gas velo- 
city in a cooled up-flow (y < 0 )  will be virtually reduced to zero if an electric 
field of magnitude 

E, = o(1 ~ y ( ~ ~ - ~ ~ )  11 e.s.u. 
mAa log @/a) 

is applied a t  the inner cylinder. 

r = b can be expressed in terms of the Nusselt numbers 
The heat transfer coefficients at the inner cylinder r = a and the outer cylinder 

(3.24) 

respectively. In  terms of dimensionless quantities 

( 3 . 2 6 ~ )  

In  expressions ( 3 . 2 5 ~ )  and ( 3 . 2 6 ~ )  J1 and Yl are Bessel functions of the first order 
and I, and K ,  are modified Bessel functions of the first order. The non-dimensional 
quantities nio), n 3 ,  nil) and nf)  are shown in figure 3 for b/a = 2 and 

0 < A% < 3.1230, 

the first critical Rayleigh number; there is little variation in these quantities 
for small Rayleigh numbers, but as the first critical Rayleigh number is ap- 
proached there is a large variation. 

The rate of volume flow through the annulus is 

( -  yU,+cAU,) RdR. (3.27) 

13-2 
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From (3 .17) ,  (3 .18) ,  (3.25) and (3 .26)  it  follows that 

and 

Hence the rate of volume flow through the annulus can be simply expressed in 

(3 .28)  

0.00 

12, 

- 0.04 

- 0.08 

At 

FIGURE 3. Quantities nho), np), nLo) and nil) shown as functions of At up to the first critica 
Rayleigh number. At the inner wall the Nusselt number Nu, = ynho) f EAnjo), and at the 
outer wall the Nusselt number Nu, = yn;l)+ [An;,). The volume rate of flow through the 
~ M U ~ U S  is Q = 2nak(yqc+&4q,), where qc = @/a) nil)-nLo’ and qe = (b/a) np’-n?’. 

The quantities qc and qe for b /a  = 2 and 0 < A* < 3.1230 are readily obtained 
from the results shown in figure 3. 

Consider, as an illustration of the above theory, the convective motion of 
ammonia gas between concentric cylinders of radius a = 6 cm and b = 1 cm, 
and for which y = 2 250 and A = 16. First, since A = /?gra3/kv and taking 
To = 25 “C, it follows from table 1 that there must be a wall temperature decrease 
of 0.8 OC/cm; on using (3 .12) ,  (3 .16a)  and (3 .16b)  it follows from figures 1 and 2 
that a t  r = 0.75 cm the actual velocity uc = T 1 1  cm/sec and the actual tempera- 
ture 8, = 3 “C. If now the potential difference between the inner and outer 
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cylinder is 7.3 kV then mE,"/ga = 50, and so at r = 0.75 cm the electrical induced 
velocity and temperature are ue = - 8 cmlsec and 8, = - 1 "C. Furthermore, 
under these conditions pio) = 7 15, &4nio) = - 13 a t  the inner cylinder; also 
ynil) = f 10 and = + 6 at the outer cylinder. Hence if 

dT,/dx = - 0.8 OC/cm, a = + cm, b = 1 cm 

and the potential difference is 7.3 kV, then (i) the actual velocity u = - 19 cm/sec 
and temperature 8 = -4°C at r = 0*75cm, provided y = +250; and (ii) 
u = 3cm/sec, 8 = +Z"C at r = 0*75cm, if y = -250. Moreover, the Nusselt 

N = 6.0228 x loz3 per g mol 
M = 17 
u = 63 cm3/g mol 

kB = 1.380 10-la erg/'C 

p = 7.7 x 10-3 g/cm3 

v = 0.14cma/sec 
k = 0-145 cm2/sec 
m = 4.94cm3/mol 

= 1-44 x lopla d p  ~m 

TABLE 1. Physical constants for ammonia gas (Loeb 1927; Kaye & Laby 1928; 
Childs 1946). 

number at the inner wall due to a pressure gradient y = - 250 is decreased by 
85 % and a t  the outer wall there is an increase of 60 yo if there exists a 7-3 kV 
potential difference. The signs of the above percentages are changedif y = + 250. 

It should be noted that there is a limit to the magnitude of the potential 
difference between the cylinders. As far as the author is aware information is 
not available for ammonia but this should not be too different from the data for 
air for which the peak sparking voltage is approximately in the range 15 to 20 kV 
for a 4 cm spark gap (see Kaye & Laby 1928). 

Finally the above analysis has been developed for an unstable thermal strati- 
fication of the gas. Stable thermal stratification is obtained if the wall tem- 
perature increases with height and a corresponding analysis for a paraelectric gas 
with an imposed radial electric field could be developed but will not be considered 
in the present paper (see Morton 1960). 

4. Convection due to a heated charged sphere in a paraelectric gas 
Consider a sphere of r&dius a maintained at a constant temperature T,, 

where TI > To the ambient temperature of the surrounding paraelectric gas; 
the sphere is charged to potential V,V. The system will be referred to spherical 
polar co-ordinates ( r ,  8, $), 8 being measured from the lower stagnation point. 
From equations (2.16) it follows that the electric field components are: 

where 

E, = Esa2/r2, (E, = E4 = 0 ) ,  

E, = Vu/300a e.s.u. 

Due to symmetry the system will be independent of $. The equations to be 
solved are given in $2. On elimination of the pressure from equation (2.2) there 
results the equation: 

- p curl (v x curl v) = curl F - pv curl curl curl v. (4.2) 
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The equation of continuity is satisfied identically by the components 

where @ is the stream function. On substitution of (4.3) into (4.2) and (2.3) and 
using (4.1) and (2. la), there results a pair of coupled non-linear partial differential 
equations in @and T ,  to be solved subject to the boundary conditions 

v=O,  T = T l  on r = a ,  and v+O, T+T0 as r-+co. 

A complete solution of these equations would be a formidable task and herein is 
given an approximate solution of the corresponding boundary-layer-type 
equations, which are now derived. 

Let units of length, electric field strength, temperature difference and velocity 
be a, E,, Tl-To and v/a respectively. Dimensional analysis of the @ and T 
equations leads to the introduction of the three dimensionless parameters : 
G = pga3(Tl - To)/v2, the Grashof number; P = v/k ,  the Prandtl number; and 
c = mE,"/ga, already introduced in 0 3. Physically speaking, the Grashof number 
represents the ratio of the gravitational buoyancy force to the viscous forces. 
The laminar convection flows of interest here are those associated with moder- 
ately large Grashof numbers, i.e. G 2 104. This restriction implies that all viscous 
and thermal effects are confined to a thin boundary layer next to the heated 
charged sphere. Following the usual boundary-layer theory approach for obtain- 
ing an asymptotic solution for large G of the @ and T equations, it  was found 
convenient to introduce the new variables : 

(4.4) 

The equation of motion (4.2) is now expressed in terms of these variables. Thus 
on using (4.3) it  follows that: 

R = r/a = 1 + G-ay, x = 8, CD = @/vaG*, 0 = (T - To)/(Tl - To). 

+ O(G-*)]), (4.5a) pv curl curl curl v = 0, 0,  @ GQ - - - ( a4 [ Rsinxay4 
1 a4a 

and 

p curl (v x curl v) = 

furthermore, on using (2.14) and (4.1), there results the expression 

On substitution of (4.5a), (4.5b) and ( 4 . 5 ~ )  into (4.2) there results the equation 

ay R3 sin2z ax ay3 ay axay2 2c0sx sinax ay a2a1 ay2 
ao I [ 1 (a~a3a aa a3a) +sinx-+- - - ~ - - -  -___--..--- 

1 a4a 
Zay4 

+O(G-h). (4.6) 
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Further simplification of this equation is possible on introducing the dimen- 
sionless velocity components: 

where U and W satisfy the equation of continuity 

a/ax (Usinx) + slay ( W  sinx) = 0. (4.8) 

Then equation (4.6) is reduced to 

ia3u . ao 1 a ( au 
au) Ray3 ay ~ 3 a y  ax ay 

+sinx---- U-+ W- 

2g ao 
R5) ax] 

= G-4- -W-+ COSX-- - +O(G-*). (4.9) 
R [ ~3 ay ( 

Similarly, on using (4.4) and (4.7), the temperature equation (2.3) becomes 

(4.10) 

Equations (4.8), (4.9) and (4.10) are to be solved subject to the boundary con- 
ditions : 

U = W = O ,  0 = 1  at y=O,  and U - t O ,  @ - t o  as y-+co. 
(4.11) 

There are now several points to be discussed concerning equations (4.8) 
to (4.11). It should be noted that when G is very large such that terms of O(G-4) 
may be neglected, then R fi 1 and the terms on the right-hand sides of (4.9) and 
(4.10) vanish. There results, if < = 0, the conventional boundary-layer equations 
for the free convection from a heated sphere:? 

and 

~ +Osinx = 
a2u 

aY2 
a a 

-(Usin%)+-(Wsinx) = 0, 
ax aY 
a2o ( ao ao) P u-+w- = o .  aY2 ax ay 

(4.12) 

These equations assume that the pressure across the boundary layer is constant. 
However, when G is moderately large (i.e. lo4 < G < los), terms of O(G-4) in 
equations (4.9) and (4.10) should not be neglected. In  fact those terms of O(G-4) 
on the right-hand side of equation (4.9) which involve the temperature give rise 
to a pressure gradient across the boundary layer; these terms are due to the 
radial component of the gravitational buoyancy force and to the electrical buoy- 
ancy force. Thus, to examine the effect of a radial electric field on the free-convec- 
tion from a heated sphere, terms of O(G-&) in equations (4.9) to (4.11) must be 

Merk & Prim (1954) have obtained approximate solutions to these equations, for a 
wide range of Prandtl numbers, using a method. developed by Squire (1938). 
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retained. Moreover, to the same approximation, the variable R cannot be replaced 
by unity. In  a similar fashion the pressure gradient across the boundary layer 
has been taken into account by Levy (1955) in a theoretical investigation of the 
free convection from a heated horizontal cylinder. 

A modified momentum equation is now obtained from (4.9) as follows. Since 
U and 0 -+ 0 as y -+ 00 it  is reasonable to assume in addition that aU/ay, R aU/ay, 
R2 a2U/ay2 and R 2 0  --f 0 as y -+ co; these assumptions are probably equivalent to 
the assumption that U and 0 decay at least exponentially to zero as y -+ 00. 

On multiplying both sides of equation (4.9) by R2dy and integrating with respect 
to y from y to co, and using the equation of continuity (4.8), there results: 

wu 

+cotsJ  O3 (R)  u 2  +O(G-*). (4.13) 
?I 

This equation, together with the thermal equation (4.10), may now be solved 
approximately using the method of Squire (1938). The actual range of integration 
y = 0 to co is replaced by the effective range y = 0 to S, where 6 is the boundary- 
layer thickness. I n  doing so it is assumed that the hydrodynamic and thermal 
boundary-layer thicknesses are equal. This assumption is exact if P = 1 and 
only approximately true when P N 1. The dimensionless velocity and thermal 
profiles are taken to satisfy 

These conditions are satisfied by 

2 2 
U = F(s):(l-i) and 0 = (1-5)  (4.15) 

Modified momentum and thermal integral equations are obtained on integrating 
equations (4.10) and (4.13) across the boundary layer from y = 0 to y = 6 and 
using (4.8) and (4.14). Theseare: 

and 

- (g)o + sin s s,” ~ 2 0 d y  - (L + cot x) Jo8 g d y  

- ($ )o  = P ( L + c o t r )  s,” UOdy. 

(4.16) 

(4.17) 
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On substitution of the assumed profiles (4.15) into (4.16) and (4.17) there results, 
after some algebra, the following equations for determining the unknown func- 

(4.18) 
tions F(x) and 6(x): 60 1 "sinx p=-- 

P asinxJo T d x ,  

F26d6/dx+35S2sinx+F262cotx- 15(7+8/P) F 
+G-t6[(45/P) F+ 3 5 6 2 s i n x - ~ P 2 6 2 c o t x - ~ ( c o ~ ~ -  ZiJ&d6/dx] 

+O(G-*) = 0, (4.19) 

subject to the boundary condition 

d6ldx = 0 at x = 0. (4.20) 

These equations have been solved numerically, using a step-by-step finite 
difference method, for the following cases: 

G4 = 20, 25, 30 and 40, 

< = mE,"/ga = 0,  1, 5 and 10, 

The mean value of the Nusselt number is defined as 
and taking P = 0.98 for ammonia gas. 

in terms of the dimensionless moduli we obtain 
~ 

l/=O 

(4.22) 

Results for f i / G i  are shown in figure 4 for the above values of G i  and <. For 
example if the sphere has a diameter of 5 cm then < = 0,  1,5 and 10 corresponds 
to the sphere being maintained a t  the potentials 0, 16.17, 37.35 and 52-84kV, 
respectively (see table 1). 

The influence of a radial electric field on the convective motion due to a heated 
sphere in a paraelectric gas may be summarized as follows. 

(i) As the applied electric field increases the electrical buoyancy force increases 
causing a decrease in the boundary-layer thickness and so an increase in the heat 
transfer at the surface. Thus if a = 2-5 cm, To = 20 "C and Tl- To = 60 "C then 
for ammonia G* = 20; as seen from figure 4 the electrostatic potentials 16-71, 
37.35 and 52.84kV will then produce in %/Gi increases of 3*, 16 and 28%, 
respectively. 

(ii) The presence of the electric field will probably delay separation near the 
upper pole of the sphere. However, information cannot be gained on this topic 
from the above approximate method of solution of the basic equations of motion. 

Now with regard to the method of solution adopted it is evident that the 
results obtained on the free convection (< = 0 )  from a heated sphere in ammonia 
gas are more accurate than those calculated from the conventional laminar 
boundary-layer equations (4.12). For confirmation with experimental results a 
similar calculation was carried out for the free convection from a heated sphere 
in air. Recent measurements by Bromham & Mayhew (1962) on the laminar free 
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convection from a heated sphere, having a diameter equal to 4inches, gave the 
results = 0*378G&, for the range 4 x lo6 < G < lo6. Taking P = 0.7 and 
G = 8.1 x lo6, then Squire’s procedure applied to the modified boundary-layer 
equations (4.10) and (4.13) gave Nu = 0.369 G*, whilst when applied to the con- 
ventional boundary-layer equations (4.12) Merk & Prins (1954) obtained 
Nu = 0.365G). Obviously the difference between theory and experiment, in 
this range of Grashof number, is not explained by accounting for such terms as 

0.40 
20 25 30 35 40 

Qt 

for a charged sphere in ammonia gas FIGURE 4. Mean Nusselt number 
for various E = rnE:/ga. 

the pressure gradient across the boundary layer. The discrepancy is probably 
due to the basic assumptions of Q 2 together with an inadequate treatment of the 
plume at the upper pole of the sphere. However, if the gas is paraelectric and 
a radial field is imposed then there will be a substantial modification in the pres- 
sure across the boundary layer due to the induced electrical buoyancy force. 
Thus the method of solution adopted should be sufficient to predict general 
trends and the correct order of magnitude of the effects caused by the electric 
field. 

5. Further comments 
This paper deals entirely with the effect of an electric field on the convection 

and heat transfer in a paraelectric gas. It is evident that substantial electric 
fields are required to produce observable changes in flow and heat transfer 
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characteristics. However, the effect of an electric field on heat transfer may be 
even more apparent for fields of smaller intensity, in the case of a dielectric liquid. 
This would follow from the fact that for polar liquids the dielectric constant and 
its temperature dependence are large compared with those for a paraelectric gas. 
A possible approach for obtaining quantitative information on the effect of an 
electric field on heat transfer in a dielectric liquid would be to use empirical 
relationships for the variation of the density and dielectric susceptibility with 
temperature to replace expressions (2.7) and (2.12), respectively; also it might 
be necessary to revise the simplified equations (2.16) for the calculation of the 
electric field. This approach would describe body motions in the liquid as a direct 
consequence of the defects in the gravitational and electrical body forces pro- 
duced by heating. It appears, however, that body motions can be produced in a 
dielectric liquid by an electric field even in the absence of heating. Thus Avsec 
& Luntz (1937), using electric field strengths of up to 10 kV/cm, have observed 
steady cellular patterns of motion in light oils. For example if the gap between 
two concentric cylinders is filled with a dielectric liquid and the outer cylinder is 
earthed whilst the electrical potential of the inner cylinder is raised then a t  some 
critical potential difference a two dimensional toroidal motion of the liquid 
occurs. In  a second experiment Avsec & Luntz (1937) observed that an electric 
field can produce steady cellular motions in the interface regions between two 
immiscible dielectric fluids. A quantitive study of this latter type of instability 
in surface electro-convection has been made by Malkus & Veronis (1961). It is 
evident that an understanding of the former type of internal electroconvection 
is essential in the development of any theory on heat transfer in dielectric 
liquids. 

One further comment may be of interest. Ivey & Lee (1956) attempted to 
repeat the experiments of Schwarz (1949) using moist air with a view to construct- 
ing a continuous-reading hygrometer. No appreciable change in heat transfer 
was produced by the electric field. The explanation is likely to be that H,O 
molecules tend to associate in groups having an effective zero dipole moment 
(see Le FBvre 1948). 

The author is indebted to Dr B. R. Morton for some detailed and extremely 
helpful comments on an earlier form of this paper. 
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